

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/43

Paper 4 A Level Structured Questions

October/November 2019

MARK SCHEME
Maximum Mark: 100

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 14 printed pages.

[Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 14

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 14

Question	Answer	Marks
1(a)	Platinum / Pt Aluminium / Al BOTH	1
1(b)(i)	M1: use of or quoting a valid Nernst equation $E = E^{e} + 0.0590 / z \log [ox] / [red] OR E = 0.15 + (0.0590 / 2) \log 2$	2
	M2: E = (+) 0.16 (0.159) V minimum 2 sig. fig.	
	correct answer scores 2 marks	
1(b)(ii)	$E_{\text{cell}} = 0.16 - (-1.66) = +1.82 \text{ V}$ minimum 3 sig. fig.	1
1(b)(iii)	$2Al + 3Sn^{4+} \rightarrow 2Al^{3+} + 3Sn^{2+}$	2
	M1: species	
	M2: balancing	
1(c)	M1 : number of C (= $300000 \times 60 \times 60 \times 24$) = 2.59×10^{10} (C)	4
	M2: number of F(= $2.592 \times 10^{10} / 9.65 \times 10^4$) = 2.69×10^5 (moles of electrons)	
	M3: moles of A l (= 2.69 × 10 ⁵ /3) = 8.95 × 10 ⁴	
	M4: mass of A l (= 8.95 × 10 ⁴ × 27) = 2420 kg	
	correct answer scores 4 marks	
1(d)	M1 : (Cr ²⁺ + 2e ⁻ \rightleftharpoons Cr) E ⁰ = −0.91 and (2H ⁺ + 2e ⁻ \rightleftharpoons H ₂) E ⁰ = 0.00 seen	2
	M2: hydrogen formed instead / hydrogen (ions) easier to reduce / hydrogen has more positive E°	

© UCLES 2019 Page 4 of 14

Question	Answer	Marks
2(a)	M1: eight electrons around N atom [N=O, N-O, N-Cl with N-O as dative]	2
	M2: all other electrons correct	
2(b)(i)	(rate =) k[C <i>l</i> NO ₂][NO]	1
2(b)(ii)	$mol^{-1} dm^3 s^{-1}$	1
2(b)(iii)	Yes AND number of moles of reactants in overall equation is the same as order in rate equation	1
2(c)(i)	 straight line with a negative gradient starting at 2.0 × 10⁻⁴ reaches at 1.8 × 10⁻⁴ at 0.2 seconds Award 1 mark for two points, award 2 marks for all three points 	2
2(c)(ii)	$2 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$	1
2(c)(iii)	The reaction has reached equilibrium	1

© UCLES 2019 Page 5 of 14

Question	Answer	Marks
3(a)	a measure / degree of disorder / randomness of a system	1
3(b)	M1: negative – molecules have less energy in the system	3
	M2: positive – solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
3(c)(i)	(standard) Gibbs free energy <u>change</u>	1
3(c)(ii)	M1 : $(\Delta)G = \Delta H - T\Delta S$	2
	M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = ΔH / ΔS [1]	

© UCLES 2019 Page 6 of 14

Question			Answer	
4(a)	M1: CH₃COC <i>l</i> or	ethanoyl chloride		
	M2: AlCl ₃ catalys	st		
4(b)	reagent	organic product	name of mechanism	
	Cl	chlorine atom(s) in side chain only	free radical substitution	
	nitric / sulfuric	O ₂ N one only –NO ₂ group added at 3 position	electrophilic substitution	
	Br	no reaction with Br ₂		
	Award 1 mark for	r each correct entry to the table	e [5]	
4(c)(i)	nucleophilic addi	tion		

© UCLES 2019 Page 7 of 14

9701/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	
4(c)(ii)	M1 and M2: first structure – award one mark for two points correct, award two marks for four points correct. correct polarity shown on C=O bond curly arrow from double bond to O of the C=O lone pair shown on C of CN- ion curly arrow from C (on CN- ion) to C of C=O M3: middle structure correct intermediate AND curly arrow from lone pair on O- to H+ or H of H ₂ O or HCN M4: third structure correct product AND either CN- reformed (if HCN seen in step 2) OR curly arrow on H-CN bond towards CN in step 2	4	
4(d)(i)	СH ₃ — С — ОН Н	1	1
4(d)(ii)	LiA <i>î</i> H ₄ or NaBH ₄	1	
4(d)(iii)	conc H ₂ SO ₄ / conc H ₃ PO ₄ / Al ₂ O ₃	1	
4(d)(iv)	6	1	

© UCLES 2019 Page 8 of 14

Question	Answer	Marks
4(d)(v)	 25–50 110–160 190–220 Award 1 mark for two points, award 2 marks for three points	2

Question	Answer	Marks
5(a)(i)	$K_{\rm sp} = [Ag^+]^2[S^{2-}]$	1
5(a)(ii)	• $[S^{2-}] = 1.16 \times 10^{-17}$ • $[Ag^{+}] = 2.32 \times 10^{-17}$ • $K_{sp} = 6.2(4) \times 10^{-51}$ minimum 2 sig. fig.	2
	Award 1 mark for two points, award 2 marks for three points	
5(a)(iii)	M1 : moles Ag ₂ S = 1 / 247.9 = 0.00403 moles [1] 2sf min	2
	M2 : $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2sf min ecf on M1	
	correct answer scores 2 marks	
5(b)(i)	M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$	2
	M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	
	correct answer scores 2 marks	

© UCLES 2019 Page 9 of 14

9701/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
5(b)(ii)	M1: Both equilibria correctly stated moles KOH = $0.005 \times 0.2 = 1 \times 10^{-3}$ moles HOBr(initial) = $0.020 \times 0.2 = 4 \times 10^{-3}$ moles HOBr(eqm) = $4 \times 10^{-3} - 1 \times 10^{-3} = 3 \times 10^{-3}$ moles BrO-(eqm) = 1×10^{-3}	2
	$[H^+] = 3 \times 2.0 \times 10^{-9} = 6 \times 10^{-9}$ pH = 8.2(2) correct answer scores 2 marks	

Question	Answer	Marks
6(a)(i)	$Mg(g) \rightarrow Mg^{+}(g) + e^{-}$	1
6(a)(ii)	$Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq) + H_2(g)$	1
6(a)(iii)	more reactive and easier to ionise down the group OR more reactive and ionisation energies decrease down the group	1
6(b)(i)	brown gas and white solid	1
6(b)(ii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	1
6(b)(iii)	M1: more stable (down the group)	3
	M2: cationic radius increases / charge density of M2+ decreases (down the group)	
	M3: NO ₃ ⁻ anion is less polarised / distorted	

© UCLES 2019 Page 10 of 14

Question	Answer	Marks
6(c)	M1: less soluble / decreases (down the group)	4
	M2: ΔH_{latt} and ΔH_{hyd} both decrease / less exothermic down the group	
	M3: ΔH_{hyd} decreases by more (than ΔH_{latt})	
	M4: $\Delta H_{\rm sol}$ becomes more endothermic / less exothermic	

Question	Answer	Marks
7(a)	forms one or more stable ions with incomplete / partially filled d-orbitals / d-subshell	1
7(b)(i)	purple to pale pink / colourless AND orange to green	1
7(b)(ii)	$3\text{Sn}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 3\text{Sn}^{4+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	1
7(c)(i)	 six coordinate bonds / dative bonds / lone pairs donated to the (central) metal ion award 1 mark for all three points	1
7(c)(ii)	$[Ru(NH_3)_4Cl(SO_2)]^+$	1
7(c)(iii)	H ₃ N _{IIII} , NH ₃ O ₂ S NH ₃	3

9701/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
7(c)(iv)	cis-trans or geometric(al) [1]	1
7(c)(v)	M1: complexes have two sets of d orbital(s) of different energy OR d-orbitals splits into two sets (of orbitals)	3
	M2: visible light absorbed (and complementary colour observed)	
	M3: electron(s) promoted / excited OR electron(s) moves to higher (d–) orbital	

Question	Answer	Marks
8(a)(i)	 any one from: OH⁻ / NaOH; aqueous / dilute; heat under reflux H⁺ / HCl / H₂SO₄, aqueous / dilute; heat under reflux protease or named protease; water; T = 30° – 40°C all three points in each bullet [1] 	1
8(a)(ii)	HO NH ₂ It three amino acids in any ionic / non-ionic states [1]	2
	M2: three amino acids in the correct ionic state for their conditions [1]	

Page 12 of 14 © UCLES 2019

Question	Answer	Marks
8(b)	 permanent dipole-dipole one group that will have a δ⁺ and another with δ⁻ e.g. CO, NH, COOH, OH BOTH [1] hydrogen bonds one group that will have a H^{δ+}, e.g. NH, OH and another with lone pair, e.g. NH, COOH, OH, CONH₂ BOTH [1] ionic bonding NH₃+ and COO- BOTH [1] ALLOW London forces C₄H₉ groups or parts of these alkyl groups 	3
8(c)(i)	any structure containing one COOH / COCl and NH2 groups in the same molecule [1]	1
8(c)(ii)	HOCH ₂ CH ₂ OH [1] ethan(e)-1,2-diol [1] ecf for diols HO ₂ CCO ₂ H or C <i>l</i> OCCOC <i>l</i> [1] ethan(e)dioic acid or ethan(e)dioyl chloride [1] ecf for diacids / diacyl chlorides	4

Question	Answer	Marks
9(a)(i)	$RNH_2 + H^+ \rightarrow RNH_3^+$ OR $RNH_2 + HCl \rightarrow RNH_3Cl$ [1]	1
9(a)(ii)	weaker AND lone pair of N delocalised into benzene ring [1]	1

© UCLES 2019 Page 13 of 14

Question	Answer	Marks
9(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
9(c)(i)	2 [1]	1
9(c)(ii)	CH ₂ next to ester and terminal CH ₃ are circled [1]	1
9(c)(iii)	 one less peak the lost peak is NH₂ / aryl amine protons exchange with D OR protons are labile OR valid equation ✓✓ for two marks [2] 	2
9(d)	C ₆ H ₄ NH ₂ ⁺ and CH ₃ CH ₂ CH ₂ CH ₂ ⁺ [1]	1

© UCLES 2019 Page 14 of 14